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Abstract

This paper shows that high-frequency, irregularly-spaced, FX data can generate

non-normality, conditional heteroskedasticity, and leptokurtosis when aggregated

into fixed-interval, calendar time even when these features are absent in the original

D.G.P. Furthermore, we introduce a new approach to modeling these high-frequency

irregularly spaced data based on the Poisson regression model. The new model is

called the autoregressive conditional intensity (ACI) model and it has the advantage

of being simple and of maintaining the calendar time scale. To illustrate the virtues

of this approach, we examine a classical issue in FX microstructure: the variation in

information content as a function of fluctuations in the intensity of activity levels.
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1. Introduction

The spot foreign exchange (FX) market is an around-the-clock, around-the-globe, de-

centralized, multiple-dealer market characterized by an enormous trading volume (an

average of $1.5 trillion of FX traded according to Lyons, 2001). Interdealer trading ac-

counts for roughly two-thirds of this volume and unlike other, more traditional financial

markets (such as the NYSE’s hybrid auction/single-dealer or the NASDAQ’s centralized

multiple-dealer markets), FX trade data is not generally observable because there are

no disclosure regulatory requirements.

Arguably, the sheer volume and peculiar organizational features of the spot FX

market makes its study one of the most exciting topics of investigation in theoretical and

empirical macroeconomics and finance. Thus, this paper examines the unconventional

temporal properties of FX data and the effect that these properties have on typical

econometric investigations of microstructure effects.

Specifically, this paper addresses two important issues: (1) to what extent are the

conventional stylized facts of these high-frequency financial data (such as non-normality,

leptokurtosis and conditional heteroskedasticity) attributable to the stochastic arrival in

time of tick-by-tick observations, and (2) the introduction of new modeling approaches

for high-frequency FX data and in particular of a new dynamic count data model, the

autoregressive conditional intensity (ACI) model. To be sure, we believe that many of

the observations we make concerning the FX market are not limited to these data and

are generally applicable in other contexts as well.

The first of these two issues is intimately related with the extensive literature on

time aggregation and time deformation and has to do with the irregular nature in

which FX events arrive over time. There are a number of physical phenomena, such

as temperature, pressure, volume, and so on for which sampling at finer and finer

intervals would be desirable since in the limit, the sampling frequency would deliver
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continuous measurements in line with the stochastic differential equations that usually

describe these phenomena in continuous-time. Thus, there exists an extensive literature

on sampling theory and aliasing designed to establish the minimum sampling rates

necessary to identify the model. This is a classical issue in the literature on fixed-

interval, time aggregation.

Nevertheless, high-frequency financial data are, in a sense, already sampled at their

limiting frequency since sampling at finer intervals would not deliver any further infor-

mation: there is no new activity between two contiguous observations. This unusual

characteristic makes econometric modeling problematic. On one hand, continuous-time

formulations stand in the face of the irregular manner in which new observations are

generated. On the other hand, discrete-time models overlook the information content

enclosed in the varying time intervals elapsing between observations.

The second of the issues we investigate relates more generally to modern analysis

of high-frequency, tick-by-tick data. Early studies estimated models in event time,

without explicit account of calendar time (see Hasbrouck, 1988, 1991 and Harris, 1986).

Hausman, Lo and MacKinlay (1992) and Pai and Polasek (1995) treated time as an

exogenous explanatory variable. The introduction of the autoregressive conditional

duration (ACD) model by Engle and Russell (1998) represents the first direct attempt at

jointly modeling the process of interest and the intervals of time between observations in

a dynamic system. By contrast, we propose conducting the analysis in the usual calendar

time scale and instead extract the information contained in the random intensity of event

arrival per unit of calendar time — that is, the count process that represents the dual of

the duration process in event time.

As an illustration of the considerable advantages of our approach, we investigate

a classical issue in the microstructure literature: whether trades arriving when trade

intensity is high contain more information than when this intensity is low. Inventory

based models of information flow (see Lyons 2001) suggest that low intensity trades are
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more informative because inventory management generates a flurry of activity designed

to rebalance dealer positions. Alternatively, Easly and O’Hara (1992) argue that if there

exists private information in the market, the arrival of new trades raises the probability

that dealers attach to those trades containing new information. As we shall see, our

investigation with quote data suggests that the story is somewhat more complicated

and lies somewhere between these two explanations.

2. Temporal Properties of the FX Market

This section investigates in what manner does the temporal pattern of the FX data

affect the salient statistical properties of these data. More specifically, we will suggest

that many of the properties to be discussed below can be explained as artifacts of time

aggregation of data that is inherently irregularly spaced in time. Thus, we begin by

summarizing these stylized facts (for a survey and summary see Guillaume et al., 1997),

which largely motivate the typical econometric techniques used in the literature. Hence,

denote price at time t as

xt ≡ log(fxt), (2.1)

where fx denotes exchange rate quotes or prices (as the data may be), and t refers

to a calendar-time interval during which kt observations (or ticks) of the variable fx

have elapsed. Then, if we denote τ as the operational time scale in which observations

arrive, we have that the correspondence between calendar-time t and operational-time

τ is given by

τ = ϕ(t) = ϕ(kt) =
t∑

j=1

kj for k = {kt}
∞

t=1. (2.2)

Hence, k denotes the frequency of aggregation so that ϕ(t)−ϕ(t− 1) = kt, that is, the

number of operational time observations per sampling interval (t − 1, t]. In traditional
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fixed-interval aggregation, such as aggregation of monthly data into quarters, k is a

fixed number (specifically, k = 3 for this example). However, FX data arrive at random

intervals so that kt is best thought of as a stochastic point process.

For simplicity, we do not distinguish here between “asks” and “bids” in which case,

xt is typically taken to be the average of the log ask and log bid quotes. The change of

price or return is defined as:

rt ≡ [xt − xt−1]. (2.3)

The volatility associated with this process is defined as

vt ≡
1

kt

kt∑

j=1

|rτ−j|, (2.4)

where kt corresponds to expression (2.2). The absolute value of the returns is preferred

to the more traditional squared value because it captures better the autocorrelation and

seasonality of the data (see Taylor, 1988; Müller et al., 1990; Granger and Ding, 1996).

Although there are other quantities of interest (such as the relative spread, the tick

frequency, and the volatility ratio), these are more fundamental variables of interest.

These variables display the following stylized characteristics:

1. The data is non-normally distributed with “fat tails.” However, temporal aggre-

gation tends to diminish these effects. At a weekly frequency, the data appears

normal.

2. The data is leptokurtic although temporal aggregation reduces the excess kurtosis.

3. Seasonal patterns corresponding to the hour of the day, the day of the week and

the presence of traders in the three major geographical trading zones (East Asia,

Europe and America) can be observed for returns and particularly for volatility

(see Dacorogna et al., 1993, and 1996).
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4. Let the scaling law reported in Müller et al. (1990) be defined as:

|xτ − xτ−1| =

(
∆τ

m

)D

, (2.5)

where m is a constant that depends on the FX rate and D = 1/E is the drift

exponent. For a Gaussian random walk, the theoretical value of D = 0.5. However,

it is observed that D � 0.58 for the major FX rates. The scaling law holds with

a similar value of D for volatility.

5. Volatility is decreasingly conditionally heteroskedastic with the frequency of ag-

gregation.

6. Seasonally filtered absolute returns data exhibits long-memory effects, that is,

autocorrelations that decay at a slower than exponential rate (usually hypergeo-

metric or even quasi-linear decay rates).

In order to investigate what mechanisms may give rise to these stylized facts, we

experiment with a rather simple example. Specifically, under common forms of market

efficiency, it is natural to assume that the price process of a financial asset follows a

martingale. Therefore, assume that the driving process for FX prices is a random walk

— a more stringent assumption than a martingale in that it does not allow dependence

in higher moments. Accordingly, let

xτ = ρxτ−1 + ετ ετ ∼WN(0,σ2ε), (2.6)

where the random walk condition would imply ρ = 1.

Consider now a simple scenario in which the frequency of aggregation is deterministic

and cyclical, i.e., k = k1, k2, ..., kj, k1, k2, ..., kj , .... This is a convenient way of capturing

the seasonal levels of activity during different hours of the day, or days of the week and

serves to illustrate some basic points. The (point-in-time) aggregated process resulting
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from (2.6) and the frequency of aggregation described above result in a time-varying

seasonal AR(1):

xt = ρk1xt−1 + ut ut ∼ (0, σ2u,t), (2.7)

xt+1 = ρk2xt + ut+1 ut+1 ∼ (0, σ2u,t+1),

...

xt+j−1 = ρkjxt+j−2 + ut+j−1 ut+j−1 ∼ (0, σ2u,t+j−1),

xt+j = ρk1xt+j−1 + ut+j ut+j ∼ (0, σ2
u,t),

...,

where the errors are uncorrelated and have variances, σ2
u,t+(i−1) = (1 + ρ2 + ... +

ρ2(ki−1))σ2ε , i = 1, ..., j, and t is measured in small intervals of calendar time (such

as one hour, say). Further calendar-time aggregation by point-in-time sampling (as

is sometimes done to avoid intra-day seasonal patterns) with k̃ =
∑j

i=1 ki,
∑j

i=1 ki, ...,

yields the constant parameter AR(1) process

xT = ρk̃xT−1 + eT eT ∼WN(0, σ2e), (2.8)

with σ2e =
∑j−1

i=0 ρ
2

∑
i

l=0
klσ2u,t−i, k0 = 0. The time scale T now refers to larger intervals

of calendar-time (e.g. days or weeks) relative to the calendar-time intervals given by t.

In addition, note that most of the stylized facts described at the top of this section

refer to the first differences of the variables, and therefore, we also derive their generating

mechanism. From (2.7) and after some rearrangements, we get:

∆xt+1 =
ρk2 − 1

ρk1 − 1
ρk1∆xt + ut+1 −

(
ρk2 − 1

ρk1 − 1
ρk1 − ρk2 + 1

)
ut, (2.9)

∆xt+2 =
ρk3 − 1

ρk2 − 1
ρk2∆xt+1 + ut+2 −

(
ρk3 − 1

ρk2 − 1
ρk2 − ρk3 + 1

)
ut+1,

...,
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that is, a time-varying seasonal ARMA(1,1) process, except for ρ = 1 (the model then

collapses to a random walk with time-varying variance). Instead, further aggregation

up to the time-scale T results in:

∆xT = ρk̃∆xT−1 +∆eT . (2.10)

Let us revisit then the six stylized facts at the top of the section in light of this

simple manipulation:

1. Non normality of ∆xt and normality of ∆xT is coherent with the fact that ut is

a weighted sum of a smaller number of original errors (ετ ) than eT . The time-

varying nature of (2.9) can also contribute to the generation of outliers, that in

turn can determine the leptokurtosis in the distribution of ∆xt.

2. (2.9) can also explain why the value of D in (2.5) is not 0.5: xt is not a pure

Gaussian random walk. It is more difficult to determine theoretically whether

(2.9) can generate a value of D close to the empirical value 0.59. We will provide

more evidence on this in the simulation experiment of the next subsection.

3. The long memory of ∆xt can be a spurious finding due to the assumption of a

constant generating mechanism, even if particular patterns of aggregation can

generate considerable persistence in the series.

4. The presence of seasonality in the behavior of ∆xt is evident from (2.9). (2.10)

illustrates that this feature can disappear when further aggregating the data.

5. Conditional heteroskedasticity can also easily emerge when a constant parameter

model is used instead of (2.9). That it disappears with temporal aggregation is a

well known result, see e.g. Diebold (1988), but (2.10) provides a further reason

for this to be the case, i.e., the aggregated model is no longer time-varying.
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6. The time-scale seasonal transformations by Dacorogna et al. (1993, 1996) can be

interpreted in our framework as a clever attempt to homogenize the aggregation

frequencies, i.e., from k = k1, k2, ..., kj, k1, k2, ..., kj, ... to k = ˜k, ˜k, ..., and consist

in redistributing observations from more active to less active periods. This changes

the t time scale, which can still be measured in standard units of time, and makes

the parameters of the ∆xt process stable over time. This transformation attenuates

several of the mentioned peculiar characteristics of intra daily or intra weekly

exchange rates.

In order to further investigate whether temporal aggregation alone can explain these

features, we provide some simple simulations in the next subsection.

2.1. A Monte Carlo Study of FX Properties

This subsection analyzes the claims presented above and illustrates some of the theo-

retical results just derived via Monte-Carlo simulations. The D.G.P. we consider for the

price series is the following operational time AR(1) model:

xτ = µ+ ρxτ−1 + ετ ,

where ετ ∼ N(0, 1). Under a strong version of market efficiency, it is natural to exper-

iment with µ = 0 and ρ = 1. However, we also consider µ = 0.000005 and ρ = 0.99 to

study the consequences of slight deviations from the random walk ideal. We simulated

series of 50,000 observations in length. The first 100 observations of each series are

disregarded to avoid initialization problems.

The operational time D.G.P. is aggregated three different ways:

1. Deterministic, fixed interval aggregation: This consists on a simple sampling

scheme with kt = 100 ∀t or, if we define the auxiliary variable sτ = 1 if observation

τ is recorded, 0 otherwise, then sτ = 1 if τ ∈ {100, 200, ...}, 0 otherwise.
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2. Deterministic, seasonal, irregularly spaced aggregation: Consider the

following deterministic sequence that determines the point-in-time aggregation

scheme:




sr = 1 if r ∈ {1, 2, 3; 26, 27, 28; 36, 37; 41, 42; 56, 57, 58; 76, 77}

sr = 0 otherwise
,

and sr+100n = sr for r ∈ {1, 2, ..., 100} and n ∈ {1, 2, ...}. In other words, the

aggregation scheme repeats itself in cycles of 100 observations. Within the cycle

there are periods of high frequency of aggregation and low frequency of aggregation

that mimic the intensity in trading typical of the FX market. Note that from

the sequence {sτ}
50,000
τ=1 it is straight forward to obtain the sequence {kt}

T
t=1. For

example, the first few terms are: 1, 1, 23, 1, 1, 8, ...

3. Random, seasonal, irregularly spaced aggregation: Let hτ ≡ P (s′τ = 1)

which can be interpreted as a discrete time hazard.1 Accordingly, the expected

duration between recorded observations is ψτ = h−1τ . Think of the underlying

“innovations” for the process that generates s′τ as being an i.i.d. sequence of

continuous-valued logistic variables denoted {vτ}. Further, suppose there exists a

latent process {λτ} such that:

P (s′τ = 1) = P (vτ > λτ ) = (1 + eλτ )−1.

Notice, λτ = log(ψτ − 1). Hamilton and Jordà (2002) show that one can view

this mechanism as a discrete-time approximation that generates a frequency of

aggregation that is Poisson distributed. For the sake of comparability, we choose

λτ to reproduce the same seasonal pattern as in bullet point 2 but in random time.
1We use the notation s

′

τ
to distinguish it from its deterministic counterpart introduced in bullet

point 2.
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Accordingly:

λτ = λ− 1.5λsτ ,

where λ = log(15− 1), since 15 is the average duration between non-consecutive

records described by the deterministic, irregular aggregation scheme introduced

above. In other words, the probability of an observation being recorded is usually

0.07 except when sτ = 1 in which case this probability jumps to 0.8.

Table 1 compares the following information for the original and aggregated data:

(1) the coefficient of kurtosis of the simulated price series; (2) the p-value of the null

hypothesis of normality from the Jarque-Bera statistic; (3) the estimated coefficient D

of the scaling law; (4) the presence of ARCH in absolute returns (|rt| in (2.3)) ; and (5)

the presence of ARCH in volatility for averages over 5 periods (vt in (2.4)).

Several patterns are worth noting from this table. Both forms of irregularly spaced

data generate fat tailed distributions away from gaussianity with excess kurtosis and

ARCH in absolute returns. The coefficient for D is very close to the analytical level of 0.5

for the original and the regularly spaced data but it takes on values of approximately

0.55 for irregularly spaced data for both cases of ρ = 1. This is close to the 0.58

reported for most FX series. In addition, the seasonal patterns induced through the

deterministic, and irregularly spaced aggregation, are readily apparent in the shape of

the autocorrelation function of absolute returns but not for the returns series per se, in a

manner that is also characteristic of FX markets. Consequently, this simple experiment

along with the derivations in the previous section demonstrate that time aggregation

may be behind many of the stylized facts common to high frequency FX data and that

these statistical properties may not be reflective of the properties of the native D.G.P.
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3. The Information Content of Order Flow

The previous sections demonstrate that the irregular nature of data arrival characteristic

of FX data (as well as other financial data) instills rather unusual statistical properties

to the data, even if these properties are not native to the operational time processes

themselves. This section investigates a different modelling aspect — that of incorporating

the information about the stochastic intensity of data arrival into classical fixed interval

econometrics. We illustrate the proposed methods by examining an important issue

in FX microstructure: the information content of order flow. We begin by briefly

describing the data and the microstructure background to motivate the techniques that

are proposed thereafter. The section concludes with the empirical results.

3.1. The Information Content of Quote Spreads and Intensity of Quote Ar-

rivals: The HFDF-93 Data

Rational expectations and arbitrage-free theories of exchange rate determination suggest

that all relevant information in exchange rates is common to all market participants,

perhaps with the exception of central banks. However, as an empirical matter, these

macroeconomic models tend to fail rather miserably (see Isard, 1995). By contrast,

microstructure models focus on the role of asymmetric information, suggesting that

order flow is an important factor in explicating exchange rate variation.

Without devoting too much time to developing microstructure theoretical models,

we discuss the two main views on the relation between order flow and information. On

one hand, Lyons (2001) suggests that innovations in nondealer order flow spark repeated

interdealer trading of idiosyncratic inventory imbalances. Hence, a substantial amount

of liquidity trading is generated with virtually no new information and as a consequence,

periods of low intensity trades are viewed as more informative. On the other hand, Easly

and O’Hara (1992) suggest the inverse relation to be true in the context of a signal-
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extraction model of asymmetric information and competitive behavior. Thus, periods

of high intensity in trading would correspond with periods in which the information

content is high.

Before devoting more time to explaining how we plan to explore these issues empir-

ically, it is important to describe the data in our analysis and its limitations. The data

correspond to the HFDF-93 data-set available from Olsen & Associates. These data

contain indicative quotes (rather than trades) that provide non-dealer customers with

real-time information about current prices on the USD-DM FX rate2. These quotes

lag the interdealer market slightly and spreads are roughly twice the size of interdealer

spreads (see Lyons, 2001). Although most research done on these data has focused on

forecasting, here we will explore the dynamics of the bid-ask spread as a function of

quote-arrival intensity so as to get a measure of how information content varies with

this intensity.

The FX market is a 24 hours global market although the activity pattern throughout

the day is dominated by three major trading centers: East Asia, with Tokyo as the

major trading center; Europe, with London as the major trading center; and America,

with New York as the major trading center. Figure 1 displays the activity level in

a regular business day as the number of quotes per half hour interval. The seasonal

pattern presented is calculated non-parametrically with a set of 48 time-of-day indicator

variables. Figure 2 illustrates the weekly seasonal pattern in activity by depicting a

sample week of raw data.

The original data-set spans one year beginning October 1, 1992 and ending Septem-

ber 30, 1993, approximately 1.5 million observations on the USD-DM FX rate. The data

has a two second granularity and it is pre-filtered for possible coding errors and outliers

at the source (approximately 0.36% of the data is therefore lost). The subsample that
2The HFDF-93 contains other very interesting tick-by-tick data on other exchange rates and interest

rates which are not explored here.
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we consider contains 3,500 observations of half-hour intervals (approximately 300,000

ticks) constructed by counting the number of quotes in half hour intervals throughout

the day. For each individual half-hour observation we then record the corresponding

bid-ask spread. A comprehensive survey of the stylized statistical properties of the data

can be found in Guillaume et al. (1997). Here, we only report some of the salient

features.

The average intensity is approximately 120 quotes/half-hour during regular business

days although during busy periods this intensity can reach 250 quotes/half-hour. The

activity level significantly drops over the weekend although not completely. The bid-

ask spread displays a similar seasonal pattern, with weekends exhibiting larger spreads

(0.00110) relative to regular business days (0.00083).

Although we do not observe the levels of trading activity directly, these are nat-

urally associated with the intensity of quote arrivals. Hence, to obtain a measure of

information content, we will use the bid-ask spread. The explanations for the width

of the spread vary widely (see O’Hara, 1995), and while undoubtedly inventory and

transaction costs are important factors, the notion that information costs affect prices

is perhaps the most significant development in market structure research. In fact, ev-

idence in Lyons (1995), Yao (1998), and Naranjo and Nimalendran (2000) all suggest

that dealers increase their spreads to protect themselves against informative, incoming

order flow. As we mentioned above, Lyons (2001) reports that the quote-spread to non-

dealers (which corresponds to our data) is twice the spread quoted to dealers. This is

consistent with the notion that dealer risk aversion against informed trading generates

wider spreads and thus cements our confidence in the interpretation of the width of the

bid-ask spread as a measure of information flow.
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3.2. Modeling the Intensity of Quote Arrival: The Autoregressive Condi-

tional Intensity Model

A common approach in the empirical finance literature is to model the data as being

generated by a time deformation model. Following the original ideas of Clark (1973)

and Tauchen and Pitts (1983), the relation between economic time and calendar time is

specified either as a latent process or as a function of observables. For example, Ghysels

and Jasiak (1994) propose having time pass as a function of quote arrival rates while

Müller et al. (1990) use absolute quote changes and geographical information on market

closings. The nonlinearities introduced into the discrete-time representations of these

time deformation processes can be summarized in the following expression:

xt = µ(kt) + Φ(kt;L)xt−1 + θ(kt;L)εt, (3.1)

where µ(kt) is the intercept, Φ(kt;L) and θ(kt;L) are lagged polynomials in which kt is

the aggregation frequency described in (2.2) that describes the correspondence between

economic time (or as we have denoted above, operational time) and calendar time. Note

that when kt = k, as is typical in conventional fixed-interval aggregation, the model in

(3.1) delivers a typical constant-parameter representation. However, for a generic point

process kt the dependency on k can be quite complex (see Stock, 1988).

A question that naturally arises in this context is whether the parameters of the gen-

erating mechanism can be uncovered from the aggregated data. Although some papers

address this issue in a discrete-time, time-domain framework (e.g. Wei and Stram, 1990

and Marcellino, 1998), it is usually analyzed as a discretization of a continuous-time

process and in the frequency domain as is done in Bergstrom (1990) and Hinich (1999).

A common consequence of aggregation of high-frequency components is a phenom-

enon known as aliasing. Standard methods exist to smooth point processes to produce

unaliased, equally-spaced aggregates. Hinich (1999) in particular, determines the mini-
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mum sufficient sampling rate that allows the discrete-time representation of the system

to be identified, while Hinich and Patterson (1989) show the relevance of adopting a

proper sampling scheme when analyzing high-frequency stock returns. The idea im-

plicit in these filtering methods is that the underlying D.G.P. is a constant-parameter,

continuous-time model. Approximations with continuous-time models in finance are

common but conceptually, they are generally ill-suited to describe high-frequency irreg-

ularly spaced data since the data already appear in their native frequency. Furthermore,

because our analysis focuses on semi-structural issues related to the effects of quote in-

tensity and information flow, we prefer to follow the tradition in the microstructure

literature and avoid these filtering methods since they distort the very microstructure

relationships that we wish to investigate.

In this sense and with regard to the issues discussed above, we share Engle’s (2000)

view that the joint analysis of quote arrival intensity and the size of the bid-ask spread

generalizes standard time-deformation models by obtaining a direct measure of the

arrival rate of new information and then measuring exactly how this influences the

distribution of other observables in the model. But while Engle (2000) investigates the

interarrival times themselves (such as is done in Engle and Russell, 1998), we advocate

in favor of analyzing the point process directly and of modeling this process dynamically.

Hence, instead of looking at the duration in time between observations, we investigate

the dual of this problem, that is, its associated count process.

Therefore, the measurements of the number of quotes per unit time (in our investiga-

tion, 30-minute intervals) is an example of a count variable such as when one measures

the number of customers that arrive at a service facility, the arrival of phone calls at a

switchboard, and other analogous variables that describe infrequent events that occur

at random times within the interval of observation. Denoting the number of quotes per

30-minute interval as kt, the benchmark for count data is the Poisson distribution (see

Cameron and Trivedi, 1998 for an excellent survey on count data models) with density,
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f(kt|xt) =
e−λtλkt

t

kt!
kt = 0, 1, 2, ..., (3.2)

and conditional expectation

E(kt|xt) = λt = exp(x′tγ), (3.3)

so that log(λt) depends linearly on xt, a vector of explanatory variables that may in-

clude the constant term and lags of the dependent variable k. Expression (3.3) is called

the exponential mean function and together with expression (3.2) they form the Pois-

son regression model, the workhorse of count data models. The model can be easily

estimated by maximum likelihood techniques since the likelihood is globally concave.

However, unlike most applications of the Poisson regression model, the variable k

is a time series that exhibits remarkable persistence (the Ljung-Box statistic takes on

the values Q5 = 9607,and Q10 = 13, 694 and the autocorrelation function only dips

below 0.15 after 16 periods or equivalently, eight hours). One solution to this problem

is to endow expression (3.3) of a more conventional time series representation, similar

in concept to the specification common in ACD, ACH3, and ARCH models. Thus, we

propose replacing expression (3.3) with

log(λt) = α log(λt−1) + βkt−1 + x
′

tγ. (3.4)

Thus, we refer to the model in expressions (3.2) and (3.4) as the autoregressive con-

ditional intensity model of order (1,1) or ACI(1,1). Extensions of expression (3.4) to

more general ACI(p,q) lag structures is straight-forward as we will see in the empirical

application. Expression (3.4) ensures that the intensity parameter λt remains strictly

3ACH stands for Hamilton and Jorda’s (2002) autoregressive conditional hazard model, which is a

dynamic, discrete-time duration model.
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positive for any values of α, β, and γ while allowing the dependence of log(λt) to be

linear in past values.

The ACI(1,1) endows the original expression (3.3) with rather rich dynamics in a

very parsimonious manner: the process log(λt) depends on infinite lags of kt−1 and xt at

a geometrically decaying rate β. Note that stationarity will require the condition α+β <

1. Estimation of the ACI(1,1) can be done by conditional maximum likelihood techniques

by setting λ0 to the unconditional mean of k (alternatively, λ0 can be estimated as an

additional parameter) and is disarmingly simple. For example, one can simply specify

the following three lines of code in the LogL object in EViews version 4.0 (see EViews

manual, chapter 18):

@log ll

log(lambda) = c(1) + c(2)*log(lambda(-1)) + c(3)*k(-1) + c(4)*x

ll = log(@dpoisson(k,lambda))

3.3. Empirical Results

According to the discussion in previous subsections, let kt denote the number of quotes

per half hour interval and let yt denote the bid-ask spread that corresponds to the half

hour interval t. Thus, the problem of measuring the information content of order flow

can be translated into that of modeling the joint density of kt and yt. This joint density

can be decomposed without loss of generality as,

h(kt|kt−1,yt−1, θ1) =
e−λtλkt

t

kt!
, (3.5)

and

g(yt|yt−1,kt, θ2), (3.6)

where yt−1 = {yt−1, yt−2, ...} and kt−1 = {kt−1, kt−2, ...} and the conditional density

(3.6) corresponds to the process described in expression (3.1). In particular, the speci-
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fication of the conditional mean for the point process kt corresponds to a version of the

ACI model described in the previous subsection in expression (3.4), namely :

log(λt) = seasonals+ θ(L) log(λt−1) +Ψ(L)kt−1 +Π(L)yt−1, (3.7)

where the seasonals are a collection of indicator variables for time-of-day effects, day-

of-week effects, and holiday effects. The corresponding lag polynomials are

θ(L) =
(
θ1 + ...+ θ7L

7
)(

1− θdL
48
)
(1− θwL

336), (3.8)

Ψ(L) =
(
ψ1 + ...+ ψ7L

7
)(

1− ψdL
48
) (

1− ψwL
336

)
,

Π(L) =
(
π1 + ...+ π7L

7
)
,

that is, the dynamic formulation of the intensity allows for deterministic as well as

multiplicative, stochastic, time-of-day and day-of-week seasonal effects. We include up

to 7 lags to capture some of the periodicity in the “lunch” and other breaks that recur

across the trading areas. The model for yt is the following:

yt = seasonals(1 + F0(kt)) +Φ(L, kt)yt−1 + εt,

with

Φ(L, kt) = φ1(1 + F1(kt)) + φ2(1 + F2(kt))L+ φ3(1 + F3(kt))L
2, (3.9)

where Fi(kt) for i = 0, 1, 2, 3 is a non-parametric estimate based on a sixth order poly-

nomial designed to capture the effects of the intensity level on the short-run dynamics

of the spread variable. There are at least two ways in which the formulation of the

model in (3.9) may appear incomplete. One is that we do not consider multiplicative,

stochastic seasonal effects. However, these are implicit in the manner the coefficients

are time-varying in k. The second is that we do not specify the variance in a dynamic

way. However, the residuals of the fitted model did not show any evidence of ARCH

effects which indicates that modelling the variance may not be central to learning about
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the short-run dynamics of the bid-ask spread. This result is also consistent with our

discussion on time deformation in section 2.

Table 2 compares the estimates of a simple Poisson count regression model exclu-

sively based on the seasonal dummies against the ACI model in equations (3.6) and

(3.7). These results are rather encouraging. The improvement on the overall fit of the

data is quite remarkable by any measure. The Ljung-Box statistics reveal that the ACI

model dramatically reduces the amount of left-over serial correlation in the residuals

although there seems to be room left for improvement.

The second part of the exercise examines the dynamics of the spread as a function

of the level of activity. Figure 3 depicts the estimated autoregressive parameters as a

function of the intensity. In the limit, as kt → 0 then φ1 → 1, φ2 → 0, and φ3 → 0

as we should expect when the sampling frequency is so high as to record observations

were no activity has elapsed. However, as the aggregation frequency becomes higher,

the parameter estimates display a fair amount of non-monotonic variation, ranging

from high persistence to negative correlation and back into higher levels of persistence.

Figure 4 reports the fluctuation in the average, seasonally-adjusted residual spread as

a function of the intensity. After accounting for the intra-day trading patterns, the

spread exhibits two well defined peaks: One at low levels of activity and another when

the intensity reaches 140 quotes per half-hour (recall that the average trading intensity

in a regular business day is around 120 quotes per half hour). The first peak is thus

consistent with the view that inventory imbalance adjustment generates uninformative

activity as is suggested in Lyons (2001). However, the second peak is consistent with

Easly and O’Hara’s (1992) signal-extraction model. Although our enthusiasm for this

result has to be guarded due to the limitations that these data impose, we believe that

it is of considerable importance because previous studies (see references in Lyons, 2001)

have not considered non-monotonicities in the manner in which we report here.
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4. Conclusions

In this paper we have shown how temporal aggregation of high-frequency, irregularly-

spaced data can generate non-normality, conditional heteroskedasticity, and leptokur-

tosis even when these features are absent in the original D.G.P. In addition, we have

introduced a new approach to modeling high-frequency irregularly spaced data based

on the Poisson regression model. The new model is called the autoregressive conditional

intensity (ACI) model and it has the advantage of being simple and of maintaining the

calendar time scale. When applied to high frequency FX data, the model works well and

highlights the variation in information content associated with changes in the intensity

of activity levels.
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[13] Hamilton, James D. and Òscar Jordà (2002) “A Model for the Federal Funds Rate

Target,” Journal of Political Economy, forthcoming.

[14] Hinich, Melvin J. (1999) “Sampling Dynamical Systems,” Macroeconomic Dynam-

ics, 3, 602-609.

[15] Hinich, Melvin J. and D. M. Patterson (1989) “Evidence of Nonlinearity in the

Trade-by-Trade Stock Market Return Generating Process,” in William A. Bar-

nett, John Geweke, and Karl Shell (eds.) Economic Complexity: Chaos, Sunspots,

Bubbles and Nonlinearity, Cambridge: Cambridge University Press.

[16] Harris, L. (1986) “A Transaction Data Study of Weekly and Intradaily Patterns in

Stock Returns, ”Journal of Financial Economics, 16, 99-117.

[17] Hasbrouck, J. (1988) “Trades, Quotes, Inventories and Information,” Journal of

Financial Economics, 22, 229-252.

[18] Hasbrouck, J. (1991) “Measuring the Information Content of Stock Trades,” Jour-

nal of Finance, 46, 179-207.

[19] Hausman, Jerry A., Andrew W. Lo and A. Craig MacKinlay (1992) “An Ordered

Probit Analysis of transaction Stock Prices,” Journal of Financial Economics, 31,

319-330.

[20] Isard, P. (1995) Exchange Rate Economics, Cambridge: Cambridge University

Press.

[21] Lyons, Richard K. (1995) “Tests of Microstructural Hypotheses in the Foreign

Exchange Market,” Journal of Financial Economics, 39, 321-351.

[22] Lyons, Richard K. (2001) The Microstructure Approach to Exchange Rates, Cam-

bridge, MA: MIT Press.

23



[23] Marcellino, Massimiliano, (1998), “Temporal Disaggregation, Missing Observa-

tions, Outliers, and Forecasting A Unifying Non-Model Based Approach,” Advances

in Econometrics, vol. 13, 181-202.

[24] Müller, Ulrich A., Michel M. Dacorogna, Richard B. Olsen, Olivier V. Pictet, M.

Schwarz, and C. Morgenegg (1990) “Statistical Study of Foreign Exchange Markets,

Empirical Evidence of a Price Change Scaling Law, and Intraday Analysis,” Journal

of Banking and Finance, 14, 1189-1208.

[25] Naranjo A. and M. Nimalendran (2000) “Government Intervention and Adverse

Selection Costs in Foreign Exchange Markets,” Review of Financial Studies, 12,

453-477.

[26] O’Hara, Maureen, (1995), Market Microstructure Theory, Oxford: Blackwell Pub-

lishers.

[27] Pai, J. S. andW. Polasek (1995) “Irregularly Spaced AR and ARCH (ISAR-ARCH)

Models,” in High Frequency Data in Finance, Proceedings, Olsen and Associates,

Zurich, Switzerland.

[28] Stock, James H. (1988) “Estimating Continuous-Time Processes Subject to Time

Deformation,” Journal of the American Statistical Association, 77-85.

[29] Tauchen, George E. and Michael Pitts (1983) “The Price Variability Volume Rela-

tionship on Speculative Markets,” Econometrica, 51, 485-505.

[30] Taylor, S. J., (1988), Modelling Financial Time Series, Cichester: J. Wiley and

Sons.

[31] Wei, W. W. S. and D. O. Stram (1990) “Disaggregation of Time Series Models.”

Journal of the Royal Statistical Society, Series B, 52, 453-467.

24



[32] Yao, J. (1998) “Spread Components and Dealer Profits in the Interbank Foreign

Exchange Market,” New York University Salomon Center Working Paper # S-98-4.

25



 26

Table 1. Monte Carlo Simulations of Different Irregularly Spaced Aggregation 
Schemes  
 
Kurtosis  Aggregation Type 
 Operational 

Time 
Deterministic 
Fixed Interval 

Deterministic 
Irregular 

Random 
Irregular 

ρ = 1; µ = 0 3.0041 2.9406 7.7214 6.4773 
ρ = 1; µ = 5 × 10-6 3.0019 2.9371 7.7385 6.4035 
ρ = 0.99; µ = 0 3.0108 2.8761 7.3839 6.1091 
ρ = 0.99; µ = 5 × 10-6 2.9985 2.9657 7.4858 6.2055 
Jarque-Bera (p-val.)  Aggregation Type 
 Operational 

Time 
Deterministic 
Fixed Interval 

Deterministic 
Irregular 

Random 
Irregular 

ρ = 1; µ = 0 0.4283 0.5149 0.0000 0.0000 
ρ = 1; µ = 5 × 10-6 0.5797 0.5457 0.0000 0.0000 
ρ = 0.99; µ = 0 0.4213 0.5000 0.0000 0.0000 
ρ = 0.99; µ = 5 × 10-6 0.4214 0.5414 0.0000 0.0000 
D  Aggregation Type 
 Operational 

Time 
Deterministic 
Fixed Interval 

Deterministic 
Irregular 

Random 
Irregular 

ρ = 1; µ = 0 0.5002 0.5105 0.5506 0.5351 
ρ = 1; µ = 5 × 10-6 0.5044 0.7246 0.5716 0.5531 
ρ = 0.99; µ = 0 0.4842 0.0467 0.4464 0.4454 
ρ = 0.99; µ = 5 × 10-6 0.4832 0.0502 0.4483 0.4462 
ARCH |rt|  Aggregation Type 
 Operational 

Time 
Deterministic 
Fixed Interval 

Deterministic 
Irregular 

Random 
Irregular 

ρ = 1; µ = 0 No No Yes Yes 
ρ = 1; µ = 5 × 10-6 No No Yes Yes 
ρ = 0.99; µ = 0 No Yes* Yes Yes 
ρ = 0.99; µ = 5 × 10-6 No Yes* Yes Yes 
ARCH vt  Aggregation Type 
 Operational 

Time 
Deterministic 
Fixed Interval 

Deterministic 
Irregular 

Random 
Irregular 

ρ = 1; µ = 0 No No Yes No 
ρ = 1; µ = 5 × 10-6 No No Yes No 
ρ = 0.99; µ = 0 No No Yes No 
ρ = 0.99; µ = 5 × 10-6 No No Yes Yes* 
 
 
Comments: The title “operational time” refers to the original data; “Deterministic, Fixed Interval” refers to 
aggregating the original data every 100 periods; “Deterministic, Irregular” refers to aggregating according 
to a seasonal cycle that repeats itself every 100 periods; and “Random, Irregular” refers to true random 
intervals of aggregation with a seasonal pattern. The * indicates the test was barely significant at the 
conventional 95% confidence level. 
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Table 2. Comparing the Poisson Regression with the ACI 
 
 
 Poisson Regression ACI 
Log-Likelihood -28562.37 -18145.52 
No. of parameters 55 80 
AIC 19.729 12.565 
SIC 19.842 12.730 
Ljung-Box Q5 1608 99 
Ljung-Box Q10 1903 128 
Ljung-Box Q50 2398 372 
LR test ACI vs. Poisson (p-val) 0.000 
 
 



 28

Figure 1. Quote Arrival Rate in the USD-DM FX Market: Seasonal Intraday 
Pattern  
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The graph displays non-parametric estimates of the seasonal pattern of a typical business 
day in intervals of 30-minutes. The opening and closing of major trading centers for the 
USD-DM FX is indicated. 
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Figure 2. Weekly Pattern of Quote Arrival in the USD-DM FX Market: Raw Data 
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Figure 3.  Nonparametric Estimates of the Autoregressive Parameters of the USD-
DM FX Spread Model as a Function of the Intensity of Quote Arrival per 30-minute 
Interval 
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Value of the autoregressive parameters φ1, φ2, and φ3 of the model for the USD-DM FX 
spread variable as a nonparametric function of the intensity of quote arrival. 
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Figure 4. Nonparametric Estimate of the Mean USD-DM FX Spread as a Function 
of the Intensity of Quote Arrival per 30-minute Interval. 
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